A correct proof of the heuristic GCD algorithm
نویسنده
چکیده
In this note, we fill a gap in the proof of the heuristic GCD in the multivariate case made by Char, Geddes and Gonnet ([1]) and give some additionnal information on this method.
منابع مشابه
GCDHEU: Heuristic Polynomial GCD Algorithm Based on Integer GCD Computation
A heuristic algorithm, GCDHEU, is described for polynomial GCD computation over the integers. The algorithm is based on evaluation at a single large integer value (for each variable), integer GCD computation, and a single-point interpolation scheme. Timing comparisons show that this algorithm is very efficient for most univariate problems and it is also the algorithm of choice for many problems...
متن کاملOn the Convergence Analysis of Gravitational Search Algorithm
Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...
متن کاملOn the Convergence Analysis of Gravitational Search Algorithm
Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...
متن کاملThe Euclidean Algorithm
Euclid’s algorithm gives the greatest common divisor (gcd) of two integers, gcd(a, b) = max{d ∈ Z | d|a, d|b} If for simplicity we define gcd(0, 0) = 0, we have a function gcd : Z× Z −→ N with the following properties: Lemma 1 For any a, b, c, q ∈ Z we have: (i) gcd(a, b) = gcd(b, a). (ii) gcd(a,−b) = gcd(a, b). (iii) gcd(a, 0) = |a|. (iv) gcd(a− qb, b) = gcd(a, b). Proof. Trivial; for (iv) use...
متن کاملA Modular Algorithm for Computing Polynomial GCDs over Number Fields presented with Multiple Extensions
We consider the problem of computing the monic gcd of two polynomials over a number field L = Q(α1, . . . , αn). Langemyr and McCallum have already shown how Brown’s modular GCD algorithm for polynomials over Q can be modified to work for Q(α) and subsequently, Langemyr extended the algorithm to L[x]. Encarnacion also showed how to use rational number to make the algorithm for Q(α) output sensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره cs.SC/0206032 شماره
صفحات -
تاریخ انتشار 2002